Gold nanoparticles stabilized with sulphonated imidazolium salts in water and reverse micelles
نویسندگان
چکیده
Herein we describe the synthesis of gold nanoparticles (Au-NPs) in presence of sulphonated imidazolium salts [1,3-bis(2,6-diisopropyl-4-sodiumsulfonatophenyl)imidazolium (L1), 1-mesityl-3-(3-sulfonatopropyl)imidazolium (L2) and 1-(3-sulfonatopropyl)imidazolium (L3)] in water and in a confinement environment created by reverse micelles (RMs). The Au-NPs were characterized-with an excellent agreement between different techniques-by UV-vis spectroscopy, transmission electron microscopy (TEM), dynamic light scattering (DLS) and zeta potential. In homogeneous media, the Au-NPs interact with the imidazolium ring and the sulphonate groups were directed away from the NPs' surface. This fact is responsible for the Au-NPs' stability-over three months-in water. Based on the obtained zeta potential values we assume the degree of coverage of the Au-NPs by the imidazolium salts. In n-heptane/sodium 1,4-bis (2-ethylhexyl) sulfosuccinate (AOT)/water RMs, the Au-NPs formed in presence of sulphonated imidazolium salts present different patterns depending on the ligand used as stabilizer. Interestingly, the Au-NPs are more stable in time when the salts are present in AOT RMs (three weeks) in comparison with the same RMs system but in absence of ligands (less than an hour). Clearly, the sulphonated imidazolium salts are very effective Au-NPs stabilizers in a different medium and this generates a plus to be able to use them for multiple purposes.
منابع مشابه
Haloaurate and halopalladate imidazolium salts: structures, properties, and use as precursors for catalytic metal nanoparticles.
The synthesis and characterisation of a series of new gold- and palladium-containing symmetrical imidazolium salts are described which display significant cation-dependent effects determined by the structure of the alkyl chains of the imidazolium motifs. Whereas direct reduction of the Pd salts can produce stable nanoparticles (NPs) coated by imidazolium salts, the addition of strong base to th...
متن کاملSynthesis, Characterization and Catalytic Activity of Ligand Stabilized Palladium Nanoparticle: A Catalyst Compliment to the Heck Coupling Reaction
The palladium metal is the most frequently used metal because of its excellent catalytic efficiency and most flexible varying oxidation state. So, we report that palladium nanoparticles (Pd NPs) stabilized by a ligand (o-vanilindiphenylethanedionedihydrazone, L) using reverse micelles method have been synthesized, while all particles are in spherical shape and ranging between 10 and...
متن کاملGold nanoparticles tune the activity of laccase in anionic reverse micelles.
The interfacial property of reverse micelles is an important factor affecting the catalytic activity of enzymes hosted in the micelles. In this article, the effect of gold nanoparticles (GNPs) on the catalytic activity of laccase (non-surface-active enzyme) and the related mechanism are reported. It was found that laccase activity was dependent on the size of the particle and its concentration ...
متن کاملProperties of ionic liquids on Au surfaces: non-conventional anion exchange reactions with carbonate.
A simple anion metathesis in diluted aqueous carbonate at room temperature affords 1-(12-mercaptododecyl)-3-methyl-imidazolium carbonate (MDMI-HCO(3)) from MDMI salts self-assembled on gold films and nanoparticles. The properties of MDMI-SAM differ from MDMI in solution, for which the anion exchange reaction does not proceed.
متن کاملSpontaneous formation of dye-functionalized gold nanoparticles using reverse micellar systems.
Detailed exploratory and mechanistic investigations on spontaneous formation of dye-functionalized gold nanoparticles (GNPs) using dye-based reverse micellar systems are described in this publication. The accumulated results from spectroscopic and microscopic investigations demonstrated that water molecules confined within nanoscopic enclosure of the self-assembled reverse micelles played criti...
متن کامل